Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch.

نویسندگان

  • Marcel Oberlaender
  • Zimbo S R M Boudewijns
  • Tatjana Kleele
  • Huibert D Mansvelder
  • Bert Sakmann
  • Christiaan P J de Kock
چکیده

The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we were able to identify cell type-specific intracortical circuits that may encode whisker motion and touch. Individual slender-tufted neurons showed elaborate and dense innervation of supragranular layers of large portions of the vibrissal area (total length, 86.8 ± 5.5 mm). During active whisking, these long-range projections may modulate and phase-lock the membrane potential of dendrites in layers 2 and 3 to the whisking cycle. Thick-tufted neurons with soma locations intermingling with those of slender-tufted ones display less dense intracortical axon projections (total length, 31.6 ± 14.3 mm) that are primarily confined to infragranular layers. Based on anatomical reconstructions and previous measurements of spiking, we put forward the hypothesis that thick-tufted neurons in rat vibrissal cortex receive input of whisker motion from slender-tufted neurons onto their apical tuft dendrites and input of whisker touch from thalamic neurons onto their basal dendrites. During tactile-driven behavior, such as object location, near-coincident input from these two pathways may result in increased spiking activity of thick-tufted neurons and thus enhanced signaling to their subcortical targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex.

Vertical thalamocortical afferents give rise to the elementary functional units of sensory cortex, cortical columns. Principles that underlie communication between columns remain however unknown. Here we unravel these by reconstructing in vivo-labeled neurons from all excitatory cell types in the vibrissal part of rat primary somatosensory cortex (vS1). Integrating the morphologies into an exac...

متن کامل

Layer- and cell-type-specific effects of neonatal whisker-trimming in adult rat barrel cortex.

Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns...

متن کامل

Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical ...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 10  شماره 

صفحات  -

تاریخ انتشار 2011